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Disclaimer

About this sharing session

▸ All the content presented in this session are solely based on
personal study and understanding.

▸ Certainly, I believe there are many theories and updates that
I overlooked and not deeply familiar with.

▸ If there are any facts or statements presented later are
wrong, please correct me, so that I can understand better
too.
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Motivations

Why Coppersmith’s Method ?
▸ It is a popular method in cryptanalyzing RSA cryptosystem.
▸ One of the powerful methods to deal with the small integer

solution(s) in both integer and modular polynomials.
▸ It involves lattices, and frequently applied in analyzing multivariate

cryptography and lattice-based cryptography.
▸ The method is elegant, but a bit confusing for beginners who are

not familiar with it.

Erasmus+ PhD Coppersmith’s Method: Solutions to Modular Polynomials 4/45



Table of Contents

1 Motivations

2 Introduction

3 Important Theorems & Backgrounds

4 Coppersmith’s Method

5 Applications of Coppersmith’s method

6 Solutions to Multivariate Polynomials (Optional)

7 Main Reference



Introduction

Modular Polynomials and Modular Equations

Let
F (x) = adxd

+ ad−1xd−1
+⋯ + a1x + a0 (1)

be a univariate polynomial over Z[x] with degree d > 1. Suppose we are
interested to find solutions to the modular equation of F (x) ≡ 0 (mod N).

▸ If the factorization of N is known, then solving F (x) ≡ 0 (mod N)
is easy.

▸ Otherwise, it could be difficult.
▸ Moreover, if F (x) ≡ 0 (mod N) has “small” solution, then we are

not sure whether it is necessarily hard, or not?
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Introduction (cont.)

▸ Håstad in 1988 firstly addressed similar problem of solving
F (x) ≡ 0 (mod N) with ad = 1 (monic), x < min (N) and N
composed by k distinct primes. Håstad proved that if k > d(d+1)

2 ,
then x0 can be recovered in polynomial time.

▸ Coppersmith in 1996 devised a method to find such “small” solution
in polynomial time of (log N, d), with the condition such that x0 is
the solution to F(x0) ≡ 0 (mod N) and

∣x0∣ ≤ N
1
d (2)
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Introduction (cont.)

The Central Problem
Suppose we know there exists at least one solution x0 to
F (x) ≡ 0 (mod N) and that ∣x0∣ ≤ N 1

d . How could we find them?

We know that ∣x i
0∣ ≤ N for all 0 ≤ i ≤ d . If the coefficients ai is small

enough, one might have F (x0) = 0 over Z, then numerical methods
(such as Newton’s method) can be used to find an approximation
of x0 and checks whether F (x0) ≡ 0 (mod N).
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Introduction (cont.)

What if those coefficients ai are NOT small?

Coppersmith’s Idea
Build a polynomial G (x) from F (x) that still has the same solution x0,
but with smaller coefficients ai .
In other words, build from F (x0) = 0 over ZN to G (x0) = 0 over Z.
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Introduction (cont.)

Example 1
Let F (x) = x2 + 33x + 215. Find x0 such that F (x0) ≡ 0 (mod 323).

Solution 1
Set

G (x) = 9F (x) − 323 (x + 6)
= 9x2

− 26x − 3
= (9x + 1) (x − 3)

Then, x0 = 3 is the solution to G (x) = 0, which is also the solution to
F (x) ≡ 0 (mod 323).
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Important Theorems

Theorem 1
(Howgrave-Graham) [4]. Let F (x) = ∑d

i=0 aix i ∈ Z [x]. Suppose x0 ∈ Z
is a solution to F (x) ≡ 0 (mod N) such that ∣x0∣ < X for N, X ∈ N. The
following defines the row vector associated with the polynomial F (x),

bF = (ao , a1X , . . . , ad−1X d−1, adX d) .

If ∥ bF ∥<
N
√

d+1
, then F (x0) = 0.

Erasmus+ PhD Coppersmith’s Method: Solutions to Modular Polynomials 10/45



Important Theorems (cont.)

Definition 1
Let Gi (x) = Nx i for 0 ≤ i ≤ d be d + 1 polynomials that has the root
x0 (mod N). Then we define a basis B corresponds to these polynomials
Gi (x) together with F (x) for a lattice L as follows:

B =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

N 0 . . . 0 0
0 NX . . . 0 0
⋮ ⋮ ⋮

0 0 . . . NX d−1 0
a0 a1X . . . ad−1X d−1 X d

⎞
⎟
⎟
⎟
⎟
⎟
⎠
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Important Theorems (cont.)

Theorem 2
Suppose given a basis B as defined in Definition 1, and G (x) be the
polynomial corresponding to the first vector in the LLL-reduced basis for
L. If

X < N
2

d(d+1)

√
2 (d + 1)

1
d

,

then any root x0 of F (x) (mod N) such that ∣x0∣ ≤ X satisfies G (x0) = 0
in Z.

Remark 1
Small solutions x0 may be found even when x0 does not satisfy the
condition of the theorem above.
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Coppersmith’s Method

The Full Coppersmith’s Method
Based on Theorem 2, the success of of finding small roots of modular
polynomials is essentially

2
d
4 N

d
(d+1)X

d
2 <

N
√

d + 1
. (3)

There are two strategies to allow larger value for X in (3):

1. Increase the dimension n by adding rows to L that contributes less
than N to the determinant, i.e., “x -shift” the polynomials
xF (x) , x2F (x) , ..., xkF (x).

2. Increase the power of N on the right hand side using power of
F (x). Since if F (x0) ≡ 0 (mod N), then F (x0)

k
≡ 0 (mod Nk).
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Coppersmith’s Method

At first it is not so obvious why the 2nd strategy is valid. In fact, since
F (x0) ≡ 0 (mod N), then one can express F (x) as

F (x) = (x − x0)p (x) +Nq (x)

for p (x) , q (x) ∈ Z [x]. Then,

F (x)k = [(x − x0)p (x) +Nq (x)]k

= (x − x0)
k pk
(x) + (k

1
) (x − x0)

k−1 pk−1
(x)Nq (x) +

⋯ + (
k

k − 1
) (x − x0)p (x)Nk−1qk−1

(x) +Nkqk
(x)
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Coppersmith’s Method (cont.)

Since x0 is the root to F (x0) ≡ 0 (mod N), we have

F (x0)
k
= (x0 − x0)

k pk
(x) + (k

1
) (x0 − x0)

k−1 pk−1
(x)Nq (x) +

⋯ + (
k

k − 1
) (x0 − x0)p (x)Nk−1qk−1

(x) +Nkqk
(x)

= Nkqk
(x)

≡ 0 (mod Nk)

Hence, if F (x0) ≡ 0 (mod N), then F (x0)
k
≡ 0 (mod Nk).
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Coppersmith’s Method (cont.)

Theorem 3
(Coppersmith) [1]. Let 0 < ϵ < min{0.18, 1

d }. Let F (x) be a monic
polynomial of degree d with at least one small root x0 (mod N) such
that

∣x0∣ <
1
2

M
1
d −ϵ.

Then x0 can be found in polynomial time in (d , 1
ϵ
, log (N)).
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Coppersmith’s Method (cont.)

*Note: the M in this proof is the modular N in these entire
presentation.
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Coppersmith’s Method (cont.)
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Coppersmith’s Method (cont.)
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Coppersmith’s Method (cont.)

Example 2
Let N = 4611686047418417197. Consider the polynomial

F (x) = 1942528644709637042 + 1234567890123456789x
+ 987654321987654321x2

+ x3

Find a root x0 (mod N) such that ∣x0∣ ≤ 215.
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Coppersmith’s Method (cont.)

Solution 2
From the proof of Theorem 3, x = dϵ

d−1 and 0 ≤ x ≤ 0.18. Thus we have

dϵ

d − 1
≤ 0.18 which implies d − 1

dϵ
≥

1
0.18

and that

h =
d−1
dϵ
+ 1

d
≥

1
0.18 + 1

3
≈ 2.2

Therefore, we choose h = 3 in this case.
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Coppersmith’s Method (cont.)

Since Gij = Nh−1−jX iF j (x), with 0 ≤ i < d = 3 and 0 ≤ j < h = 3. Then,

G00 = N2 G01 = NF (x) G02 = F 2 (x)
G10 = N2X G11 = NXF (x) G12 = XF 2 (x)
G20 = N2X 2 G21 = NX 2F (x) G22 = X 2F 2 (x)

Arranging all the above Gij accordingly, it forms the basis lattice B of
dimension of 9 as follows:
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Coppersmith’s Method (cont.)

We denote a0 = 1942528644709637042, a1 = 1234567890123456789, a2 =
987654321987654321 here, and take X = 215.

Executing the LLL-algorithm, Maple outputs the solution x0 = 16384 to
the F (x) ≡ 0 (mod N) above.
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Coppersmith’s Method (cont.)

Solution 3
Notice that if we eliminate the last two rows and columns from the
previous solution (that is we excluded the last two constructed G (x))
such that

Maple also outputs the same solution x0 = 16384 to the
F (x) ≡ 0 (mod N) above, but with smaller dimension of 7.

Erasmus+ PhD Coppersmith’s Method: Solutions to Modular Polynomials 24/45

Example_19.1.11_dimension_7


Some Interesting Self-Discovery

▸ Sometimes X ≤ ∣x0∣ (just not too small) is possible and still works in
finding the root x0.

▸ The solution will occur at the first row post-LLL-reduced matrix –
in fact with suitably chosen X , the solution does appear in every
row (most of the time) of the LLL-reduced matrix.

▸ It is helpful to consider the polynomial up to F (x)2, which
sometimes helps in reducing the dimension of the basis formed.
Sometimes even the original F (x) suffices to form the basis.
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Related Applications

Some Related Applications

▸ The small exponent attacks on RSA variants.
1. Small public exponent e.
2. Small private exponent d .
3. Partial secret key exposure – with certain bits of d , p, q or N,

it is possible to recover all completely.
▸ Factoring N = pq with partial knowledge of p.
▸ Factoring moduli in the form of pr q.
▸ Lattice-based cryptography and Learning with Errors (LWE).
▸ Solving the Hidden Number Problem (HNP) in finite fields and its

applications to bit security of Diffie-Hellman key exchange.
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So far...

▸ The Coppersmith’s method discussed previously is of univariate
(single variable x) case.

▸ The method is very straight forward and can be easily implemented
to search for the small solution to modular equations.

▸ What about the case of finding roots of multivariate
(integer/modular) polynomials?
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Multivariate Polynomials

The Problem of Modular Bivariate Polynomial
Suppose given F (x , y) ∈ Z [x , y], find at least one root (x0, y0) to

F (x , y) ≡ 0 (mod N)

such that ∣x0∣ < X and ∣y0∣ < Y .

Of course, one can apply the same strategy of Coppersmith, hoping
to find two polynomials F1 (x , y) , F2 (x , y) ∈ Z [x , y] such that

F1 (x0, y0) = F2 (x0, y0) = 0

over Z, and that both F1 (x , y) , F2 (x , y) are algebraically indepen-
dent (its resultant is not zero).
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Multivariate Polynomials (cont.)

Theorem 4
Let F (x , y) ∈ Z [x , y] be a polynomial of total degree d , and X , Y , N ∈ N
such that XY < N 1

d −ϵ. Then one can find polynomials F1 (x , y) , F2 (x , y) ∈
Z [x , y] such that for all (x0, y0) ∈ Z2 with ∣x0∣ < X , ∣y0∣ < Y and F (x0, y0) ≡
0 (mod N), one has

F1 (x0, y0) = F2 (x0, y0) = 0

over Z.

As the above theorem considers the case of modular form, readers
may consider the proof given by Jutla [6] and Nguyen & Stern [7]
for details.

Erasmus+ PhD Coppersmith’s Method: Solutions to Modular Polynomials 29/45



Multivariate Polynomials (cont.)

▸ I considered the work done by Jochemz-May, as their heuristic
strategy generally covers in finding both the modular and integer
roots of multivariate polynomials by modifying the strategy
accordingly.

▸ There are many strategies that had been proposed. For instance by
Boneh & Durfee and Blömer & May.

▸ I personally found that Jochemz-May’s strategy for finding roots of
modular multivariate polynomials is easier to understand (from the
beginner point of view).
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Multivariate Polynomials (cont.)

Jochemz-May’s Basic Strategy [5]
Let ϵ > 0 be anarbitrary small constant. Depending on 1

ϵ
, fixed an integer

h. For j ∈ {0, ..., h + 1}, define the set Mj of monomials

Mj ∶=

⎧⎪⎪
⎨
⎪⎪⎩

x i1
1 x i2

2 ...x in
n ∣ x i1

1 x i2
2 ...x in

n is a monomial of F h
N

and
x i1

1 x i2
2 ...x in

n
l j is a monomial of F h−j

N

⎫⎪⎪
⎬
⎪⎪⎭

where l is the leading monomial of FN with coefficient al . It is assumed
that the monomials of FN , ..., F h−1

N are all contained in the monomials of
F h

N .
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Multivariate Polynomials (cont.)

The Shift Polynomials
The following defines the shift polynomial that has the similar strategy as
in Coppersmoth’s method, i.e., Gij = Nh−1−jx iF j (x).

Gi1...in (x1, ..., xn) ∶=
x i1

1 x i2
2 ...x in

n
l j F j

N (x1, ..., xn)Nh−j (4)

for j = 0, ..., h and x i1
1 x i2

2 ...x in
n ∈Mj/Mj+1.
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Multivariate Polynomials (cont.)

Example 3
Suppose we consider a small example of modular bivariate polynomial
FN (x , y) = 1 + xy2 + x2y . Let’s assume l = x2y be the leading monomial
and let h = 2.

Then, F 2
N (x , y) = 1 + 2xy2 + 2x2y + x2y4 + 2x3y3 + x4y2 with 6

monomials of {1, xy2, x2y , x2y4, x3y3, x4y2}. Now, we want to
build a lattice having all the above monomials in its column.
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Multivariate Polynomials (cont.)

Now, following the shift polynomial described by Jochemz-May:

Gi1i2 (x , y) ∶= x i1y i2

(x2y)j
F j

N (x , y)Nh−j

with h = 2 and j = {0, 1, 2}. We can now define the set of Mj as follows:

j = 0; M0 = {1, xy2, x2y , x2y4, x3y3, x4y2}

j = 1; M1 = {x2y , x2y4, x3y3, x4y2}

j = 2; M2 = {x4y2}

Notice that the set Mj contains the monomials in F 2
N (x , y) that is

divisible by (x2y)j for j = 0, 1, 2.
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Multivariate Polynomials (cont.)

To construct the polynomials Gi1i2 (x , y), we sort out the sets such that
x i1y i2 ∈Mj/Mj+1:

M0/M1 = {1, xy2}

M1/M2 = {x2y , x2y4, x3y3}

M2/M3 = {x4y2}

Taking the first sorted set M0/M1 = {1, xy2}, we can now construct the
following shift polynomials for each element (monomial) in the set:

G00 (x , y) = x0y0

(x2y)0
F 0

N (x , y)N2−0
= N2

G12 (x , y) = x1y2

(x2y)0
F 0

N (x , y)N2−0
= xy2N2
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Multivariate Polynomials (cont.)

For the next sorted set M1/M2 = {x2y , x2y4, x3y3}, we repeat the similar
process:

G21 (x , y) = x2y1

(x2y)1
F 1

N (x , y)N2−1
= FN (x , y)N

G24 (x , y) = x2y4

(x2y)1
F 1

N (x , y)N2−1
= y3FN (x , y)N

G33 (x , y) = x3y3

(x2y)1
F 1

N (x , y)N2−1
= xy2FN (x , y)N

And for the last sorted set M2/M3 = {x4y2}:

G42 (x , y) = x4y2

(x2y)2
F 2

N (x , y)N2−2
= FN (x , y)2
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Multivariate Polynomials (cont.)

▸ Notice that all the constructed shift polynomials except G24 (x , y)
contain the monomial from the original set.

▸ Since y3 is not part of the monomials, introducing it in the basis
matrix will produce more new monomials of y3 and xy5 which are
not in the FN (x , y).

▸ This will next enlarge the dimension of the basis formed, which
contradict to the aim of having low-determinant matrix.
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Multivariate Polynomials (cont.)

The solution?

Instead of putting monomial x2y4 into M1/M2, we remain it in the
first set of M0/M1, and proceed to compute as above:

G24 (x , y) = x2y4

(x2y)0
F 0

N (x , y)N2−0
= x2y4N2
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Multivariate Polynomials (cont.)

Next, we can arrange and form the basis lattice B accordingly, as follows:

B =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 xy2 x2y x2y4 x3y3 x4y2

G00 N2 0 0 0 0 0
G12 0 XY 2N2 0 0 0 0
G24 0 0 0 X 2Y 4N2 0 0
G21 N XY 2N X 2YN 0 0 0
G33 0 XY 2N 0 X 2Y 4N X 3Y 3N 0
G42 1 2XY 2 2X 2Y 2X 2Y 4 2X 3Y 3 X 4Y 2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Multivariate Polynomials (cont.)

Since the diagonal contains 0, this can be handled easily by swapping G24
and G21:

B =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 xy2 x2y x2y4 x3y3 x4y2

G00 N2 0 0 0 0 0
G12 0 XY 2N2 0 0 0 0
G21 N XY 2N X 2YN 0 0 0
G24 0 0 0 X 2Y 4N2 0 0
G33 0 XY 2N 0 X 2Y 4N X 3Y 3N 0
G42 1 2XY 2 2X 2Y 2X 2Y 4 2X 3Y 3 X 4Y 2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

By executing the LLL-algorithm, one can proceed to find the resultant
matrix that reveals the root of the FN (x , y) = 0
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Multivariate Polynomials (cont.)

Related Applications
▸ Cryptanalysis on RSA-CRT with known difference, i.e., the

difference of dp − dq is known to the attacker.
▸ Cryptanalysis on Common Prime RSA.
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Main Reference

▸ The main reference used in preparing this sharing session.

Figure 1: Mathematics of Public
Key Cryptography by Steven D.
Galbraith - Chapter 19.
E-book is available online for free.
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